CONSTANTS

Description	Value
Acceleration of gravity on Earth (<i>g</i>)	9.80 m/s ²
Speed of light in a vacuum (c)	$3.00 \times 10^8 \text{ m/s}$
Planck's constant (h)	$6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Electron rest mass (m_e)	$9.11 \times 10^{-31} \text{ kg}$
Proton rest mass (m_p)	$1.67 \times 10^{-27} \text{ kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant (k_e)	$8.99 imes 10^9 \mathrm{N} \bullet \mathrm{m}^2/\mathrm{C}^2$
Boltzmann constant (k_b)	$1.38 \times 10^{-23} \text{ J/K}$
Gas constant (R)	8.31 J/(mol•K)
Gravitational constant (G)	$6.67 imes 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Permeability of free space (μ_0)	$4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$
Avogadro's number (N_A)	6.02×10^{23} particles/mole
Heat of fusion of water (L_f)	$3.33 imes 10^5 extrm{ J/kg}$
Heat of vaporization of water (L_{ν})	$2.26 imes10^6~\mathrm{J/kg}$
Specific heat of water (c_w)	$4.19 \times 10^3 \text{ J/(kg} \bullet^{\circ}\text{C})$
Density of water (ρ_w)	$1.00 \times 10^3 \text{ kg/m}^3$

FORMULAS

Mathematics	Force and Motion
$C = 2\pi r$	$v_f = v_i + at$
$A = \pi r^2$	$x_f = x_i + v_i t + \frac{1}{2}at^2$
$SA = 4\pi r^2$	$v_f = v_i + at$ $x_f = x_i + v_i t + \frac{1}{2}at^2$ $v_f^2 - v_i^2 = 2a(x_f - x_i)$
$V = \frac{4}{3}\pi r^3$	$a_{\rm c} = \frac{v^2}{r}$
3	$\Sigma \mathbf{F} = m\mathbf{a}$
(a, b) denotes a vector with an <i>x</i> -component of <i>a</i>	F = -kx
and a <i>y</i> -component of <i>b</i> .	$F \le \mu N$
	$F = \frac{Gm_1m_2}{r^2}$
	$F = \frac{Gm_1m_2}{r^2}$ $\theta_f = \theta_i + \omega_i t + \frac{1}{2}\alpha t^2$ $\omega_f = \omega_i + \alpha t$
	$\omega_f = \omega_i + \alpha t$
	$v = r\omega$
	$a = r\alpha$
	$\mathbf{r}_{cm} = \frac{\sum m\mathbf{r}}{\sum m}$
	$I = \sum mr^2$
	$\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F}$
	$\Sigma \tau = I \alpha$
	$P = \rho g h$
	$F = \rho V g$
	$A_1 v_1 = A_2 v_2$
	$P + \frac{1}{2}\rho v^2 + \rho g y = \text{constant}$
	1

Energy, Momentum, and Heat Transfer	Electricity and Magnetism
$W = Fd \cos \theta$	$F = \frac{k_e q_1 q_2}{r^2}$
$P = \frac{\Delta W}{\Delta t}$	
$KE = \frac{1}{2}mv^2$	$\mathbf{E} = \frac{\mathbf{F}}{q_0}$
PE = mgh	PE = qV
$PE = \frac{1}{2}kx^2$	V = -Ed
$\mathbf{p} = m\mathbf{v}$	$V = -Ed$ $V = \frac{k_e q}{r}$
$\Delta \mathbf{p} = \mathbf{F} \Delta t$	$R = \frac{\rho \ell}{A}$
$\Delta \ell = \alpha \ell_0 \Delta T$	$R = \frac{\rho \ell}{A}$
$Q = mc\Delta T$	V = IR
Q = mL	$R = \sum R_i$
$\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{d}$	$\frac{1}{R} = \sum \frac{1}{R_i}$
PV = nRT	P = IV
$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_bT$	
$\Delta E = Q - W$	$C = \frac{Q}{V}$ $C = \Sigma C_i$ $\frac{1}{C} = \sum \frac{1}{C_i}$
$W = P \Delta V$	$\frac{1}{C} = \sum \frac{1}{C_i}$
$e = rac{T_h - T_c}{T_h}$	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$
$KE = \frac{1}{2}I\omega^2$	$\mathbf{F} = I\boldsymbol{\ell} \times \mathbf{B}$
-	$B = \frac{\mu_0 I}{2\pi r}$
$L = I \omega$	$B = \frac{\mu_0 N I}{\ell}$
$T_k = 273 + T_c$	χ $\Delta \phi$
	$\varepsilon_{\rm ave} = -\frac{\Delta\phi}{\Delta t}$
	$\phi = B_{\perp}A$

FORMULAS (continued)

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.

Waves, Sound, and Light	Modern Physics
$T = \frac{2\pi}{\omega}$	E = hf
$a = -\omega^2 x$	$E = \gamma mc^2$
$x = A \sin \omega t$	$\gamma = \frac{1}{2}$
	$\gamma = \frac{1}{\sqrt{1 - \frac{\nu^2}{c^2}}}$
$T = 2\pi \sqrt{\frac{L}{g}}$	$hf = \phi + eV$
$v = f\lambda$	$\Delta x \Delta p \ge h$
$v = \sqrt{\frac{T}{\mu}}$	$\Delta E \Delta t \geq h$
$\nu = \sqrt{\frac{\gamma RT}{M}}$	$p = \frac{h}{\lambda}$
$2L = n\lambda$, <i>n</i> is an integer	$p = \overline{\lambda}$
$4L = n\lambda$, <i>n</i> is odd	
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
$n = \frac{c}{v}$	
$\frac{1}{f} = \frac{1}{s_i} + \frac{1}{s_0}$	
$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$	
$d\sin\theta = m\lambda$	
$I = I_0 \cos^2 \theta$	

FORMULAS (continued)

NOTES FOR PHYSICS TEST

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.